Positive feedback between Cdc42 activity and H+ efflux by the Na-H exchanger NHE1 for polarity of migrating cells

نویسندگان

  • Christian Frantz
  • Anastasios Karydis
  • Perihan Nalbant
  • Klaus M. Hahn
  • Diane L. Barber
چکیده

A fundamental feature of cell polarity in response to spatial cues is asymmetric amplification of molecules generated by positive feedback signaling. We report a positive feedback loop between the guanosine triphosphatase Cdc42, a central determinant in eukaryotic cell polarity, and H(+) efflux by Na-H(+) exchanger 1 (NHE1), which is necessary at the front of migrating cells for polarity and directional motility. In response to migratory cues, Cdc42 is not activated in fibroblasts expressing a mutant NHE1 that lacks H(+) efflux, and wild-type NHE1 is not activated in fibroblasts expressing mutationally inactive Cdc42-N17. H(+) efflux by NHE1 is not necessary for release of Cdc42-guanosine diphosphate (GDP) from Rho GDP dissociation inhibitor or for the membrane recruitment of Cdc42 but is required for GTP binding by Cdc42 catalyzed by a guanine nucleotide exchange factor (GEF). Data indicate that GEF binding to phosphotidylinositol 4,5-bisphosphate is pH dependent, suggesting a mechanism for how H(+) efflux by NHE1 promotes Cdc42 activity to generate a positive feedback signal necessary for polarity in migrating cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1

Directed cell movement is a multi-step process requiring an initial spatial polarization that is established by asymmetric stimulation of Rho GTPases, phosphoinositides (PIs), and actin polymerization. We report that the Na-H exchanger isoform 1 (NHE1), a ubiquitously expressed plasma membrane ion exchanger, is necessary for establishing polarity in migrating fibroblasts. In fibroblasts, NHE1 i...

متن کامل

The NHE1 Na+/H+ exchanger recruits ezrin/radixin/moesin proteins to regulate Akt-dependent cell survival.

Apoptosis results in cell shrinkage and intracellular acidification, processes opposed by the ubiquitously expressed NHE1 Na(+)/H(+) exchanger. In addition to mediating Na(+)/H(+) transport, NHE1 interacts with ezrin/radixin/moesin (ERM), which tethers NHE1 to cortical actin cytoskeleton to regulate cell shape, adhesion, motility, and resistance to apoptosis. We hypothesize that apoptotic stres...

متن کامل

Different acid secretagogues activate different Na+/H+exchanger isoforms in rabbit parietal cells.

Rabbit parietal cells express three Na+/H+exchanger isoforms (NHE1, NHE2, and NHE4). We investigated the effects of carbachol, histamine, and forskolin on Na+/H+exchange activity and acid formation in cultured rabbit parietal cells and tested the effect of NHE isoform-specific inhibition on agonist-induced Na+/H+exchange. Carbachol (10-4 M) was the weakest acid secretagogue but caused the stron...

متن کامل

Characterization of Na+/H+ exchanger NHE8 in cultured renal epithelial cells.

NHE8 is expressed in the apical membrane of the proximal tubule and is predicted to be a Na+/H+ exchanger on the basis of its primary amino acid sequence. Functional characterization of native NHE8 in mammalian cells has not been possible to date. We screened a number of polarized renal cell lines for the plasma membrane Na+/H+ exchangers (NHE1, 2, 3, 4, and 8) and found only NHE1 and NHE8 tran...

متن کامل

p160ROCK mediates RhoA activation of Na-H exchange.

The ubiquitously expressed Na-H exchanger, NHE1, acts downstream of RhoA in a pathway regulating focal adhesion and actin stress fiber formation. p160ROCK, a serine/threonine protein kinase, is a direct RhoA target mediating RhoA-induced assembly of focal adhesions and stress fibers. Here, stress fiber formation induced by p160ROCK was inhibited by the addition of a specific NHE1 inhibitor, eth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 179  شماره 

صفحات  -

تاریخ انتشار 2007